RECLAMATION

Managing Water in the West

Quarterly Activity and Monitoring Report April 1 – June 30, 2013

In compliance with the "Management Agency Agreement between the Central Valley Regional Water Quality Control Board and the United States Bureau of Reclamation" executed on December 22, 2008

Delta-Mendota Canal near Tracy, California

Table of Contents

Purpose	1
A. Flow Actions	1
1. New Melones Reservoir Operations – Provision of Dilution Flow	2
2. Water Acquisitions	3
3. DMC Recirculation Pilot Studies – Provision of Dilution Water	4
B. Salt Load Reduction Actions	4
1. Grassland Bypass Project	4
2. Westside Regional Drainage Plan	6
3. Conservation Efforts	6
C. Mitigation Actions	8
1. RTMP – Development of Stakeholder-Driven Program	8
2. RTMP – Technical Support	9
3. Wetland Best Management Practices Plan	10
4. Participation in CV-SALTS Program	11
D. Central Valley Project Deliveries Load Calculation	11
E. Reporting Requirements	
F. Funding Reporting	13
G. References	

Tables

- Table 1. Goodwin Dam Monthly Dilution Flow Allocation
- Table 2. Calculation of DMC Allocations and Loads
- Table 3. Quarterly Report Submission Schedule
- Table 4. Program Funding Initiatives

Figures

- Figure 1. Salts Discharged from the Grassland Drainage Area (tons)
- Figure 2. San Joaquin River at New Jerusalem Drain Monitoring Station

Abbreviations and Acronyms

Action Plan Actions to Address the Salinity and Boron TMDL Issues for the Lower San

Joaquin River November 2010

Authority San Luis & Delta-Mendota Water Authority

Basin Plan Water Quality Control Plan for the Sacramento and San Joaquin River

Basins, 4th Edition

BMP Best Management Practices

BO Biological Opinion

CALFED California Bay-Delta Authority

CCID Central California Irrigation District
CDEC California Data Exchange Center

CDFW California Department of Fish and Wildlife

Corps U.S. Army Corps of Engineers

CVO Central Valley Operations

CVP Central Valley Project

CVPIA Central Valley Project Improvement Act

CV Water Board Central Valley Regional Water Quality Control Board

CV-SALTS Central Valley Salinity Alternatives for Long Term Sustainability

DCRT Data Collection and Review Team

DMC Delta-Mendota Canal

DSS Decision Support System

DWR California Department of Water Resources

EC electrical conductivity

GBP Grassland Bypass Project
GDA Grassland Drainage Area

GOES Geostationary Operational Environmental Satellites

GRCD Grassland Resource Conservation District

GWD Grassland Water District

LBNL Lawrence Berkeley National Laboratory

LSJR Lower San Joaquin River

MAA Management Agency Agreement

μS/cm micro Siemens per centimeter

mg/L milligram(s) per liter (parts per million)

Reclamation United States Bureau of Reclamation

RTMP Real Time Management Program

Service U.S. Fish and Wildlife Service

SJR San Joaquin River

SJRIP San Juan Recovery Implementation Program

TAF thousand acre-feet
TDS total dissolved solids

TMDL total maximum daily load

VAMP Vernalis Adaptive Management Plan

UOP University of Pacific

WARMF Watershed Analysis Risk Management Framework

WDR Waste Discharge Requirement

WQO water quality objective

WEAP Water Evaluation and Planning System

WRDP Westside Regional Drainage Plan

WSI Water Supply Index

WWQM Wetland Water Quality Model

YSI Yellow Springs Instrument Company

Purpose

The Central Valley Regional Water Quality Control Board's (CV Water Board) Salt and Boron Total Maximum Daily Load (TMDL) was approved and placed into effect on July 28, 2006. In response to the Salt and Boron TMDL, the United States Bureau of Reclamation (Reclamation) developed the salinity management plan, *Actions to Address the Salinity and Boron TMDL Issues for the Lower San Joaquin River* (Action Plan) and entered into a Management Agency Agreement (MAA) with the CV Water Board on December 22, 2008. The MAA describes the actions Reclamation will take to meet the obligations allocated to it by the Salt and Boron TMDL for the Lower San Joaquin River. The MAA states:

Reclamation will submit quarterly reports to the Regional Water Board by 45 days after the end of the calendar quarter. The quarterly reports will include a summary of activities conducted by Reclamation during the quarter in conjunction with each element included in their Action Plan, including activities related to developing a Real Time Management Program. In addition Reclamation will include data collected relevant to DMC load evaluation.

The "Quarterly Activity and Monitoring Report" summarizes the activities conducted by Reclamation in conjunction with each element outlined in its Action Plan. The Action Plan describes Reclamation's past, current and planned practices and procedures to mitigate and manage adverse impacts of salt and boron imported into the San Joaquin Basin via the Delta Mendota Canal (DMC) in order to help achieve compliance with the objectives contained in the CV Water Board's *Water Quality Control Plan for the Sacramento River and the San Joaquin River Basins* – 4th Edition (Basin Plan).

Organization of Quarterly Report

The quarterly report provides a synopsis of the various activities associated with each element identified in the Action Plan. Action categories include Flow, Salt Load Reduction, and Mitigation. For each action a brief description and list of activities are identified. The quarterly report includes calculations of salt loads based on DMC deliveries and calculations of assimilative capacity provided through dilution flows. The calculation methods used in this report are provisional and some elements in this report do not include estimations of benefits at this time. Reclamation submitted the *Compliance Monitoring and Evaluation Plan* to the CV Water Board (Reclamation 2010) which outlines the criteria and methodology for determining DMC loads and credits.

A. Flow Actions

Reclamation agreed to provide mitigation and dilution flows to meet the Vernalis salinity and boron objectives. Historically, Reclamation provided dilution flows from the New Melones Project and through purchases for the Vernalis Adaptive Management Plan (VAMP). The dilution flow provision in the VAMP expired recently; stakeholders within the watershed are currently negotiating a new agreement to replace the VAMP. Flow actions include but are not limited to: dilution flows from New Melones Reservoir, water acquisitions, and recirculation.

1. New Melones Reservoir Operations – Provision of Dilution Flow

Brief Description: In the Flood Control Act of October, 1962, Congress reauthorized and expanded the New Melones unit (P.L. 87-874) to a multipurpose unit to be built by the U.S. Army Corps of Engineers (Corps) and operated by the Secretary of the Interior as part of the Central Valley Project (CVP), thus creating the New Melones Unit. The multipurpose objectives of the unit include flood control, irrigation, municipal and industrial water supply, power generation, fishery enhancement, water quality improvement, and recreation. Since June of 2009, New Melones has been operated to meet the National Marine Fisheries Service Biological Opinion (BO) to Reclamation on the effects of the continued operation of the CVP and the California State Water Project on the various runs of Chinook salmon, Central Valley steelhead, and green sturgeon, and their designated critical habitat.

The Sacramento and San Joaquin River Basin Plan was amended in 2004 to include a Control Program for Salt and Boron Discharges into the Lower San Joaquin River. Items 12 and 13 of the Salt and Boron Control Program state:

Item 12. Salt loads in water discharged into the Lower San Joaquin River (LSJR) or its tributaries for the express purpose of providing dilution flow are not subject to load limits described in this control program if the discharge:

- a. complies with salinity water quality objectives for the LSJR at the Airport Way Bridge near Vernalis;
- b. is not a discharge from irrigated lands; and
- c. is not provided as a water supply to be consumptively used upstream of the San Joaquin River at the Airport Way Bridge near Vernalis.

Item 13. Entities providing dilution flows, as described in item 12, will obtain an allocation equal to the salt load assimilative capacity provided by this flow. This dilution flow allocation can be used to:

1) Offset salt loads discharged by this entity in excess of any allocation or; 2) trade, as described in item 10. The additional dilution flow allocation provided by dilution flows will be calculated as described in Table IV-8 (CV Water Board 2004c).

Activities

 Reclamation continues to operate its facilities to comply with State Water Board D-1641, the applicable Biological Opinions and the Stanislaus River at Ripon monitoring station dissolved oxygen criteria.

<u>Quantification Methodology:</u> Table IV-8 (CV Water Board 2004c) states that dilution flow allocations are calculated as follows:

$$A_{dil} = Q_{dil} * (C_{dil} - WQO) * 0.8293$$

Where:

 A_{dil} = dilution flow allocation in thousand tons¹ of salt per month

 Q_{dil} = dilution flow volume in thousand acre-feet (TAF) per month – above base

flows

 C_{dil} = dilution flow electrical conductivity (EC) in micro-Siemens per centimeter

 $(\mu S/cm)$

WQO = salinity water quality objective for the LSJR at Airport Way Bridge near

Vernalis in µS/cm

Table 1 lists data and monthly calculations for the past quarter. Data for flow releases from Goodwin Dam, the Stanislaus River "design flows," and salinity at Orange Blossom Bridge are used to calculate the monthly dilution flow allocations. The water-year type is estimated based on the 75% probability of exceedance found in California Department of Water Resources (DWR) Water Supply Index Forecasts (http://cdec.water.ca.gov/cgi-progs/iodir/WSI) for the San Joaquin Valley. The 75% exceedance forecast for May 1, 2013 is 1.6, which classifies 2013 as a Critical year.

Dilution Flow Allocation: WY2013 classified as a Critical year.

Table 1: Goodwin Dam Monthly Dilution Flow Allocation

	Goodwin Dam Flow (GDF) ^a TAF	Base Design Flow (DF) ^b TAF	Q _{dil} , TAF	WQO ^c , μS/cm	C _{dil} (monthly average EC at Orange Blossom Bridge) ^d , μS/cm	Dilution Flow Allocation, A _{dil} , tons
Apr-13	79	28	51	700	72	-26,561
May-13	87	28	59	700	91	-29,798
Jun-13	18	0	18	700	68	-9,434

Source: Reclamation 2013a

2. Water Acquisitions

Brief Description: The Central Valley Project Improvement Act (CVPIA) signed into law on October 30, 1992, modified priorities for managing water resources of the CVP. CVPIA altered the management of the CVP to make fish and wildlife protection, restoration, and enhancement

a http://www.usbr.gov/mp/cvo/reports.html

b Reclamation 2010 Compliance Monitoring and Evaluation Plan

^c CV Water Board 2004a and 2004b Appendix 1: Technical TMDL Report

d http://cdec.water.ca.gov/cgi-progs/staSearch

¹ This is a typographical error in the Basin Plan Amendment. The units are actually tons.

have equal priority with agriculture, municipal and industrial, and power uses. To meet water acquisition needs under CVPIA, the U.S. Department of the Interior developed a Water Acquisition Program, a joint effort by Reclamation and the U.S. Fish and Wildlife Service (Service). The program's purpose is to acquire water supplies to meet the habitat restoration and enhancement goals of the CVPIA and to improve Interior's ability to meet regulatory water quality requirements.

Activities

• Reclamation did not acquire any additional water this quarter.

<u>Quantification Methodology:</u> The discussion on dilution flow allocation presented under New Melones Reservoir Operations is pertinent here as well. Please refer to the Table IV-8 (CV Water Board 2004c) dilution allocation formula stated for the Table 1 calculation above.

3. DMC Recirculation Pilot Studies – Provision of Dilution Water

Brief Description: The DMC Recirculation Project studied the feasibility of using CVP flows to provide dilution water for salinity management. As part of the project studies, Reclamation conducted three pilot recirculation studies in 2004, 2007, and 2008. The pilot studies pumped water from the Delta at Tracy and conveyed it through the DMC to the Newman Wasteway, where it is then conveyed to the Lower San Joaquin River. The "Delta-Mendota Canal Recirculation Feasibility Study, Plan Formulation Report" is complete and available at http://www.usbr.gov/mp/dmcrecirc/docs/final/index.html.

Activities

• No new activities related to this project have occurred in 2013.

B. Salt Load Reduction Actions

Reclamation is under a court order to provide drainage to its San Luis Unit, on the Westside of the Lower San Joaquin Valley. As part of this effort, Reclamation historically supported the Westside Regional Drainage Plan (WRDP) through grants and in-kind services. Salt Load Reduction Actions include the Grassland Bypass Project (GBP), implementation of the WRDP, and the following conservation programs: Water Conservation Field Services Program, WaterSMART Program (formerly Water 2025 Grants Program), and the California Bay Delta Authority (CALFED) Bay-Delta Water Use Efficiency Program.

1. Grassland Bypass Project

Brief Description: The GBP is a multi-agency stakeholder project currently based upon the 2009 Use Agreement² between the Reclamation and the San Luis and Delta-Mendota Water Authority

² U.S. Bureau of Reclamation and the San Luis and Delta-Mendota Water Authority, December 22, 2009.
Agreement for Continued Use of the San Luis Drain for the Period January 1, 2010 through December 31, 2019.
Agreement No. 10-WC-20-3975

(Authority) to manage and reduce the volume of agricultural drain water produced within the Grassland Drainage Area (GDA), and to use a 28-mile segment of the San Luis Drain to convey this drain water to Mud Slough, a tributary of the San Joaquin River. The GBP removed agricultural drainage water from most wetland water supply conveyance channels, facilitated drainage management that maintains the viability of agriculture in the GDA, and promoted continuous improvement in water quality in the San Joaquin River.

Activities

- The load of salts discharged from the GDA has been significantly reduced through the implementation of the Grassland Bypass Project in 1996 and the development of the San Joaquin River Improvement Project (SJRIP) in 2002.
- The reduction of salts is the result of activities conducted by the Grassland Area Farmers including source control in the GDA, tailwater recycling, and displacement of agricultural drainage water across the SJRIP re-use area.
- Figure 1 shows the progressive reduction of salts from the GDA.³ For Water Year 2013 through June 2013, we estimate that 30,450 tons of salts have been discharged to the San Luis Drain and 81,300 tons have been displaced to the SJRIP.

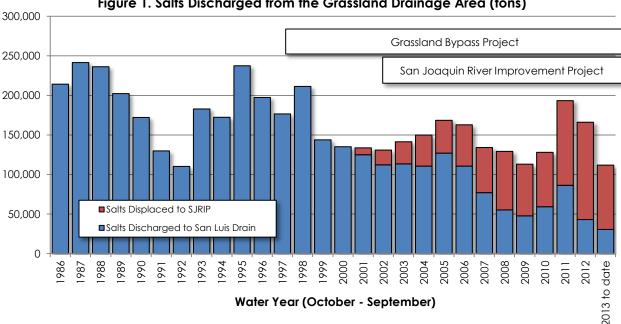


Figure 1. Salts Discharged from the Grassland Drainage Area (tons)

Reclamation and the Grassland Area Farmers continue to assist CV Water Board staff with the development of a revision of the 2001 Waste Discharge Requirement (WDR)⁴ for the

³ Source: Reclamation 2013b

⁴ California Regional Water Quality Control Board, Central Valley Region, September 21, 2001. Waste Discharge Requirements No. 5-01-234 for the San Luis & Delta-Mendota Water Authority and the United States Department of the Interior, Grassland Bypass Channel Project (Phase II), Fresno and Merced Counties.

- discharge of agricultural subsurface drainage water into Mud Slough (north), a tributary of the San Joaquin River.
- Reclamation continues to implement the monitoring requirements for the 2001 WDR. Reclamation staff continues to collect and analyze water samples from nine sites for selenium, boron, salts, nutrients, and molybdenum and continues to operate auto-samplers in the San Luis Drain and in the river at Crows Landing.
- The 2010-2011 GBP Annual Report will be published in 2013. The draft chapters for the 2012 Report will be posted on the GBP website that is maintained by the San Francisco Estuary Institute: http://www.sfei.org/gbp.

2. Westside Regional Drainage Plan

Brief Description: The Westside Regional Drainage Plan (WRDP) is a local stakeholder program developed by integrating all consistent elements of drainage management developed by government and local agencies and private partnerships. The original efforts of the WRDP focused on reducing selenium discharges to the San Joaquin River. Success of the original effort prompted a proposal to expand the WRDP to go beyond regulatory requirements and eliminate selenium, boron, and salt discharges to the San Joaquin River, while maintaining productivity of agriculture lands in the San Joaquin valley and enhancing water supplies for the region.

Reclamation provided \$30 million in grant funding to implement the WRDP since 2002.

Activities

- Reclamation continues to administer three grants with Panoche Drainage District worth \$18.8 million to implement the WRDP for source control activities, groundwater management, reuse of drain water and salt treatment/disposal. Negotiations continue on a fourth grant worth \$3.9 million.
- Panoche Drainage District used most of this money to develop the SJRIP through construction of infrastructure and environmental mitigation. So far in WY 2013, the District displaced 19,000 acre-feet of agricultural drainage water, 81,300 tons of salts and 181 tons of boron from the river. Absent the SJRIP, this water, salt, and boron would have been discharged to the Lower San Joaquin River.

3. Conservation Efforts

Brief Description: The water use efficiency program includes several grant programs which fund actions to assure efficient use of existing and any new water supplies. Efficiency actions can alter the pattern of water diversions and reduce the magnitude of diversions, providing additional benefits. Efficiency actions can also result in reduced discharge of effluent or drainage and improve water quality. Although Reclamation is unable to quantify the benefits of the various funded projects as related to salinity reduction, the following information is provided to depict the agency's water conservation efforts in the basin. Through WaterSMART and the CALFED Bay-Delta Restoration program Reclamation awarded 82 projects in the San Joaquin Valley that required performance measures since 2006. As information is collected from these projects, quantifiable benefits may be determined in the future.

Activities

Under the 2013 Bay-Delta Restoration Program: Agricultural Water Conservation and Efficiency Grants, Reclamation continues to offer grants to support projects within the San Joaquin Valley. Reclamation selected two grant recipients in 2013. Projects awarded include:

- Central California Irrigation District has been awarded \$300,000 for the Amaral System Spill Elimination Project. This project will convert 0.8 miles of open channel to pipeline and construct an intermediate reservoir on the Amaral system. The new pipeline will operate as a closed, on demand system and will eliminate operational spills. In addition, the new reservoir will capture tail water generated by upslope irrigators, eliminating drain water discharges to the San Joaquin River. The project is expected to conserve 487 acrefect of water annually.
- Firebaugh Canal Water District has been awarded \$114,000 for the Check 2 Modernization Project. This project will replace a wooden check structure with a modern reinforced concrete structure. The new structure will include fabricated control gates with motorized operators. The operators will be integrated into the FCWD's SCADA system allowing for remote monitoring and operation. This modernization project will improve operational efficiency and delivery flexibility on the entire 1st Lift Canal service area. The project will help the district better manage 10,000 acre-feet of water annually.

The 2013 WaterSMART Water and Energy Efficiency Program grants have been announced. Reclamation awarded five projects within the San Joaquin basin in 2013:

- Reclamation awarded \$1,332,506 to Henry Miller Reclamation District #2131 for making improvements to its Island Canal system, including constructing new automatic flow control structures, two automatic spillways, a new regulating reservoir, and a flow and water quality monitoring station. The project is intended to reduce operational spills and to make more precise deliveries. The project is expected to result in water savings of 4,150 acre-feet annually, which will allow the District to reduce diversions from the Delta-Mendota Canal.
- Reclamation awarded \$1,500,000 to the Patterson Irrigation District in the San Joaquin Valley to install three new pump stations and approximately 3.7 miles of new pipeline so that water from the District's drains can be recovered and pumped back into the delivery system for use, reducing the need for water from other sources. The project is expected to result in 5,000 acre-feet of water savings annually, which will allow the District to market that amount through existing and new water transfer agreements.
- Reclamation awarded \$300,000 to the Tranquillity Irrigation District near Fresno to connect two separate District distribution systems to increase efficiency. The project includes the construction of a pumping plant equipped with a Supervisory control and Data Acquisitions system and flow meter and installation of a half-mile pipeline to connect the distribution systems. As a result, the project will reduce seepage, evaporation, and storage losses, expected to result in water savings of 630 acre-feet annually. The District also expects to reduce energy consumption by approximately 216,100 kilowatt-hours each year by reducing pumping requirements.

- Reclamation awarded \$300,000 to the Ivanhoe Irrigation District near Visalia, California, to automate the 68 Main distribution system by installing a Supervisory Control and Data acquisitions system and automating five control in-line gate valves. By automating the 68 Main distribution system, the District will improve water delivery efficiencies and reduce groundwater pumping in an area experiencing groundwater overdraft. The project is expected to result in water savings of 413 acre-feet annually.
- Reclamation awarded \$599,217 to the Madera Irrigation District near Fresno, California to implement various efficiency improvements throughout its delivery system, including the installation of automated flume gates, a new Supervisory Control and Data Acquisitions system, and flow meters. The project is expected to result in water savings of 2,925 acre-feet annually through reduction of operational spills.

C. Mitigation Actions

Reclamation's Action Plan identifies two mitigation actions to reduce salinity loads: (1) a Real Time Management Program (RTMP) to improve the timing of west-side discharge of saline drainage to the LSJR so as to occur during times of sufficient river assimilative capacity, and (2) implementation of innovative wetland best management practices (BMP) for salinity. These could include early drawdown and re-flooding during years of water surplus; delayed wetland drawdown (cannot be practiced on the same land two years in a row without damaging wetland habitat) and recirculation of wetland drainage. Reclamation actively supports the development of RTMP combined with a San Joaquin River Forecast Model (currently the WARMF model) for assimilative capacity.

1. RTMP – Development of Stakeholder-Driven Program

Brief Description: The RTMP is described in the TMDL as a stakeholder driven effort to use "real-time" water quality and flow monitoring data to support water management operations in order to maximize the use of assimilative capacity in the San Joaquin River. The CV Water Board describes this assimilative capacity as up to 85% of the load determined by Vernalis salinity objective. Reclamation is working with Stakeholders and CV-SALTS to support the development of a stakeholder-driven program.

Activities

• Reclamation continues working to initiate stakeholder involvement opportunities in developing a RTMP. The RTMP team is evaluating opportunities for engaging stakeholders through participation in CV-SALTS and the Lower San Joaquin River Committee (LSJR Committee). Reclamation initiated monthly teleconferences with San Joaquin Basin stakeholders to discuss the direction and support for the RTMP. In the past quarter the subject of RTMP leadership and infrastructure has come up in discussion – there is still significant confusion about the salinity load requirements under the TMDL if real time management is not fully implemented and approved by the CV Water Board. There is further misunderstanding of the role of CVSALTS and whether financial support of CVSALTS activities has provided the west-side dischargers with an effective waiver of salt load discharge load limits as specified in the TMDL and WDR's. Current understanding is that upstream salinity concentration objectives will supersede the

- Vernalis objectives for Grassland Subarea dischargers and real-time salinity management activities will be directed at not exceeding these new objectives once they are approved.
- Reclamation continued progress on the RTMP Framework, process and milestones to identify program needs. Reclamation and the CV Water Board have maintained a monthly meeting to coordinate their efforts. Participation in these meetings includes representatives for the Westside Coalition and wetland areas. Together they are identifying the necessary requirements to establish a Water Board approved RTMP, reviewing the potential load requirements under the 2008 Salt and Boron TMDL, and discussing the upper San Joaquin River water quality objectives.

2. RTMP - Technical Support

Brief Description: A successful RTMP will require a real time monitoring network and a model capable of forecasting San Joaquin River assimilative capacity. The concept behind the RTMP is to enable the use of available assimilative capacity to export salt loads from the basin. The River Forecast model, under development, is one component of the RTMP decision support system (DSS). Reclamation is committed to participate in the development of DSS tools. Reclamation's experienced staff will continue to support the development of the RTMP and some of their activities are described below.

Figure 2. San Joaquin River at New Jerusalem Drain Monitoring Station

Activities

• The RTMP pilot study has included the development of a visualization tool that helps wetland water managers estimate salt loads leaving the District and allow a comparison to be made between actual loads and target salt loads. The tool presents real-time data on flow, EC and salt load within water supply conveyances entering the GRCD, several conveyances within the GWD and wetland drainage leaving the GRCD. The visualization tool obtains the last 31 days of hourly mean data after it has been processed by the WISKI software program at Lawrence Berkeley National Lab (LBNL) and uploaded to a Reclamation ftp site in Denver. Successful demonstrations of the tool were made to GWD staff and wetland managers from the State and Federal refuges. Recent feedback from these meetings has included moving from a 30-day to 31-day reporting period (in order to calculate monthly mean salt loads); performing the 31-day hourly export multiple times per day (it is currently performed only once per day resulting in a time lag – wetland managers like to see data no older than 6 hours); incorporating newly

refurbished stations that have been offline for several months. Water managers in GWD are now using the tool to review data from all stations prior to driving to the field from the District office. A parallel project is underway to improve the current assimilative capacity forecast model interface. This WARMF model upgrade will also bring back on line the west-side tributaries monitoring stations after repair of some of the monitoring stations with GOES transmitters that are no longer synching the GPS time. The new WARMF River Forecast Model interface will facilitate the following tasks:

- Make it easier to assemble the data sets and model inputs to make forecasts of San Joaquin River salt assimilative capacity
- Improve visualization support of each forecast to make it easier to interpret model output. In particular each river reach will be color coded according to current EC and salt load.
- The visualization tool will display data from the YSI EcoNET web server (via the LBNL server and Reclamation ftp site) to enhance understanding of salt export on a watershed scale.
- Reclamation is evaluating ftp site enhancements to improve reliability and ease of use of real-time data.

Work on this aspect is not expected to start until late August, 2013. Upgrades of the current west-side tributary stations are continuing. New GOES telemetry equipment has been acquired for the upgrades and will be installed during August/September 2013.

• LBNL and Reclamation continue to work closely with Systech Water Resources and the US Geological Survey to improve the resolution of the current surface and groundwater simulation models by redefining watersheds to match water districts on the west-side of the San Joaquin Basin and improving automation of data assimilation for real-time forecasting. A new version of WARMF-SJR has been developed that recognizes the west-side tributary discharges to the SJR. In the WARMF-SJR model the model linkage between watershed and river is severed and the flows and salt loads that were simulated by the model replaced by observed flow and salt load data from the monitoring stations. Continuous monitoring data from 2005 to 2012 has been entered into the WISKI database and added to the model input files to allow the model to be run with these inputs. For 2013 to present, synthetic data has been generated based on like-year input. The substitution of actual data for model simulated data will allow stakeholders to develop a better understanding of the relationship between their land use practices and drainage flow and salt loads.

3. Wetland Best Management Practices Plan

The California Department of Fish and Wildlife (CDFW) and the GRCD have developed BMP plans to reduce the impact of discharges from managed wetlands into the San Joaquin River. Reclamation also provided resources to support the development of a real-time monitoring network and other potential BMP analysis tools within Federal, State, and private managed wetlands.

Activities

- Reclamation continues support of the network of real-time flow and water quality
 monitoring stations at some wetland pond sites and in all major inflow and outflow
 conveyances within the GWD.
- Reclamation provided ArcGIS software to the GWD to allow the Water Master in the GWD to use the visualization tool. The tool requires the MapObjects toolbox to render color ramping on each monitored conveyance canal on the GIS map.
- Reclamation acquired the hydrologic data management system WISKI and assisted setting the system up on the GWD server. Once installed, the existing WISKI database will be migrated from Berkeley Lab to the GWD and training provided to GWD personnel on its use.
- Reclamation is meeting with the U.S. Fish and Wildlife Service, CDFW, and local wetland managers to encourage participation in the RTMP.

4. Participation in CV-SALTS Program

Brief Description: The CV Water Board and State Water Resources Control Board initiated a comprehensive effort to address salinity problems in California's Central Valley and adopt long-term solutions that will lead to enhanced water quality and economic sustainability. The CV-SALTS stakeholder group is a collaborative basin planning effort aimed at developing and implementing a comprehensive salinity management program. The goal of CV-SALTS is to maintain a healthy environment and a good quality of life for all Californians by protecting the state's most essential and vulnerable resource - water.

Activities

Reclamation continues to participate in the following sub-committees of the program: Executive, Technical Advisory, and Lower San Joaquin River. In addition:

- Reclamation continues to provide funding for the chair of the Technical Subcommittee and regularly attends the Executive Committee Policy meetings.
- Reclamation completed technical review of the Westside Salt Sources Assessment technical memoranda, which complements the CV-SALTS Pilot Salt Sources study. These reports were released to the public February 2013.
- Reclamation participates in CV-SALTS and the Lower San Joaquin River Committee as they evaluate beneficial use designations and a potential amendment of the Basin Plan.

D. Central Valley Project Deliveries Load Calculation

Brief Description: The CVP delivers water to both the Grassland and Northwest subareas (as described in the Basin Plan) through the DMC, the San Luis Canal, and the San Joaquin River/Mendota Pool. Most CVP water is pumped from the Delta into the DMC through the C.W. "Bill" Jones Pumping Plant located near Tracy, California. CVP water is conveyed south to DMC Check 13 near Santa Nella, California, where water is either mixed with the State Water Project in O'Neill Forebay and then either pumped into San Luis Reservoir for later delivery through the DMC or San Luis Canal, or conveyed further south to the DMC terminus at the Mendota Pool. During periods of drought, groundwater and river water are pumped into the DMC at several locations. The calculation methods used in this report are provisional and some elements in this report do not include estimations of benefits at this time. Reclamation submitted

the *Compliance Monitoring and Evaluation Plan* to the CV Water Board (Reclamation 2010) which outlines the criteria and methodology for determining DMC loads and credits.

<u>Quantification Methodology</u>: The monthly amount of CVP water supply delivered to each district is pro-rated according to the area of each district within either the Grassland subarea, Northwest subarea, or outside of these subareas. The monthly mean salinity of CVP water is calculated from average daily measurements taken at three locations along the DMC. The salinity of CVP water delivered to each district is associated with the salinity monitoring site closest to the District's turnout along the DMC.

The Basin Plan allocates a salt load to Reclamation for water delivered to the Grassland and Northwest Subareas. This background load allocation is calculated according to Table IV-8 Summary of Allocations and Credits (CV Water Board 2004c):

$$LA_{DMC} = Q_{DMC} * 52 \text{ mg/L} * 0.00136$$

Where:

 LA_{DMC} = Load Allocation of salts, in tons

Q_{DMC} = monthly amount of CVP water delivered to Grassland and Northwest

Subareas, in acre - feet

52 mg/L = "background" salinity of water in the San Joaquin River released at Friant

Dam (per the Basin Plan) measured as total dissolved solids (TDS)

0.00136 = factor for converting units into tons

Actual DMC salt loads are calculated by the following equation:

$$L_{DMC} = Q_{DMC} * C_{DMC} * 0.00136$$

Where:

 L_{DMC} = Actual DMC Load, in tons

Q_{DMC} = monthly amount of water delivered to Grassland and Northwest Subareas, in

acre - feet

C_{DMC} = monthly average of salinity of the water delivered to Grassland and

Northwest Subareas, in mg/L TDS

0.00136 = factor for converting units into tons

Each Subarea's Q_{DMC} is calculated and then paired with the associated monthly average TDS for that reach, so the equation becomes:

$$L_{DMC} = 0.00136 * \Sigma (Q_{DMC} * C_{DMC})$$
 Subareas

This equation is then broken into calculations for each subarea based on the source of CVP water. Table 2 lists the monthly volumes of CVP water and salts delivered to the Grassland and Northwest subareas and an estimate of the salts delivered in excess of the Monthly Load Allocation.

Table 2. Calculation of DMC Allocations and Loads

	Grassland Subarea					Northwest Subarea				Total		
	San Joaquin River and Mendota Pool Deliveries from CVP, load in thousand tons	Delta- Mendota Canal Deliveries from CVP, load in thousand tons	San Luis and Cross Valley Canal Deliveries from CVP, load in thousand tons	Total Flow, thousand acrefeet	Load Allocation, thousand tons	Actual Load - Load Allocation, thousand tons	San Joaquin River and Mendota Pool Deliveries from CVP, load in thousand tons	Delta- Mendota Canal Deliveries from CVP, load in thousand tons	Total Flow, thousand acre- feet	Load Allocation, thousand tons	Actual Load - Load Allocation, thousand tons	Total Excess Load from CVP Deliveries, thousand tons
Jun 12	39.2	11.1	7.9	158.0	11.1	47.1	3.6	4.2	22.7	1.6	6.2	53.3
Jul 12	35.4	11.5	5.6	174.5	12.3	40.1	3.3	5.0	29.6	2.1	6.2	46.4
Aug 12	37.7	11.9	4.6	160.2	11.3	42.9	3.8	5.2	27.7	2.0	7.0	49.9
Sep 12	29.2	16.3	3.1	116.9	8.3	40.3	0.3	2.2	8.1	0.6	1.9	42.2
Oct 12	28.6	8.9	3.2	84.8	6.0	34.8	0.4	0.9	2.8	0.2	1.1	35.8
Nov 12	14.0	2.8	2.1	37.0	2.6	16.2	0.3	0.4	1.6	0.1	0.6	16.8
Dec 12	6.2	0.4	0.4	12.5	0.9	6.2	0.2	0.1	0.4	0.03	0.2	6.3
Jan 13	5.4	0.9	1.3	13.9	1.0	6.6	0.1	0.1	0.3	0.02	0.2	6.8
Feb 13	31.4	6.9	3.4	81.5	5.8	35.9	2.9	1.5	9.0	0.6	3.8	39.7
Mar 13	28.9	8.3	4.8	78.8	5.6	36.4	2.7	2.3	10.0	0.7	4.3	40.7
Apr 13	31.7	5.8	6.1	76.3	5.4	38.2	3.0	2.7	10.7	0.8	4.9	43.1
May 13	45.0	11.2	7.4	147.8	10.4	53.2	4.4	2.5	17.7	1.3	5.6	58.9
Jun 13	43.0	11.9	8.7	141.7	10.0	53.6	4.1	4.8	21.1	1.5	7.4	61.0

Source: Reclamation 2013b

E. Reporting Requirements

In the MAA, Reclamation agreed to provide quarterly reports to the CV Water Board. Reclamation will consult with the CV Water Board before proposing any changes to the sample report format. Quarterly reports are due 45 days after the end of the calendar quarter:

Table 3. Quarterly Report Submission Schedule

End of Calendar Quarter	Due Date of Quarterly Report
June 30, 2013	August 14, 2013
September 30, 2013	November 14, 2013
December 31, 2013	February 14, 2014
March 31, 2014	May 15, 2014

F. Funding Reporting

Reclamation agreed in the MAA to seek additional funding, including grant funding, to support salinity control efforts. Table 4 summarizes Reclamation's funding initiatives.

Activities

Table 4. Program Funding Initiatives

Brogram	Description	Status	Period of Performance
Program	Description	Status	Performance
Program to Meet Standards	Technical Support to Meet Salinity Objectives for Vernalis	Execution 2013 Modification	FY2012 - FY2014
	Coordinator/Facilitator	Execution	
Salt and Boron TMDL	Technical Support for RTMP	Closed	FY2009 - FY2012
Salt and Boron TMDL	Continued Technical Support for SJR RTMP	Execution Closed	FY2009 - FY2012
Salt and Boron TMDL	Technical Support for LSJR Meeting Water Quality Objectives	In Negotiation	Expected September 2013
Program to Meet Standards	Technical Support Program to Meet Standards	In Negotiation	Expected September 2013
Westside Salt Assessment	Fate and Transport Study	Closed	FY2012 - FY2013
Salinity Control	Westside Regional Drainage Plan	Negotiate 2013 Grant Funding (\$3.9M)	FY2013 – 2016
Salinity Control	Grassland Bypass Project	Obligate 2013 Funding (\$880k)	FY2013
Cooperative	Grassland Water District		September 1, 2012
Agreement for a RTMP Pilot Study	Real Time Management Program Pilot Study	Negotiated New Grant Funding	- September 30, 2014

G. References

CV Water Board 2004a

Amendments to the Water Quality Control Plan for the Sacramento River and San Joaquin River Basins for the Control of Salt and Boron Discharges Into the Lower San Joaquin River Draft Final Staff Report Appendix 1: Technical TMDL Report, Regional Water Quality Control Board Central Valley Region, July 4, 2004.

CV Water Board 2004b

Amendments to the Water Quality Control Plan for the Sacramento River and San Joaquin River Basins for the Control of Salt and Boron Discharges into the Lower San Joaquin River Final Draft Staff Report. Appendix D: Background Salt and Boron Loading, Appendix E: Alternate Methods For Calculating Salt Loading from the Northwest Side of the Lower San Joaquin River. Regional Water Quality Control Board Central Valley Region, July 4, 2004.

CV Water Board 2004c

Amendments to The Water Quality Control Plan for the Sacramento River and San Joaquin River Basins for The Control of Salt and Boron Discharges into the Lower San Joaquin River Final Staff Report. Table IV-8 Summary of Allocations and Credits, Dilution Flow Allocations, Regional Water Quality Control Board Central Valley Region, September 10, 2004

Reclamation 2010

Compliance Monitoring and Evaluation Plan, In Compliance with the "Management Agency Agreement between the Central Valley Regional Water Quality Control Board and the Bureau of Reclamation" executed on December 22, 2008. US Bureau of Reclamation, November 2010.

Reclamation 2013a

Calculations for Quarterly Report, Q2-2013, Table 1: Goodwin Dam Monthly Dilution Flow Allocations, US Bureau of Reclamation, Draft, August 6, 2013

Reclamation 2013b

Delta-Mendota Canal Water Quality Monitoring Program Report for April – June 2013. US Bureau of Reclamation, Draft, July 22, 2013.